Introduction to Scientific Machine Learning
About this Course
This course provides an introduction to data analytics for individuals with no prior knowledge of data science or machine learning. The course starts with an extensive review of probability theory as the language of uncertainty, discusses Monte Carlo sampling for uncertainty propagation, covers the basics of supervised (Bayesian generalized linear regression, logistic regression, Gaussian processes, deep neural networks, convolutional neural networks), unsupervised learning (k-means clustering, principal component analysis, Gaussian mixtures) and state space models (Kalman filters). The course also reviews the state-of-the-art in physics-informed deep learning and ends with a discussion of automated Bayesian inference using probabilistic programming (Markov chain Monte Carlo, sequential Monte Carlo, and variational inference). Throughout the course, the instructor follows a probabilistic perspective that highlights the first principles behind the presented methods with the ultimate goal of teaching the student how to create and fit their own models.Created by: Purdue University
Level: Advanced

Related Online Courses
In this course you will learn how to turn solar cells into full modules; and how to apply full modules to full photovoltaic systems. The course will widely cover the design of photovoltaic... more
“Villes africaines” propose un cours sur la gestion et la planification urbaine. Après un passage par les grandes thématiques urbaines (changement climatique, infrastructures et services, énerg... more
En este curso online se estudian la gran variedad de fenómenos ondulatorios que se observan en la naturaleza. Se van a definir y analizar las magnitudes físicas que permiten caracterizar los d... more
As part of the Principles of Manufacturing MicroMasters program, this course aims to provide exposure to key principles and practices used in engineering management. Learners are given... more
El curso inicia con una introducción que presenta definiciones importantes en el área de las bases de datos, algunos datos históricos relevantes, herramientas para diseñar, crear, administrar bas... more