Nanophotonic Modeling

About this Course

This course is an introduction to photonic materials and devices structured on the wavelength scale. Generally, these systems will be characterized as having critical dimensions at the nanometer scale. These can include nanophotonic, plasmonic, and metamaterials components and systems. This course will aim to introduce students to computational techniques employed in current design and research efforts in nanophotonics. You will learn the strengths and weaknesses of each approach; what types of problems call for which one; and how your simulation will perform. Techniques include eigenvalue problems, fast Fourier transforms, band structure calculations, rigorous-coupled wave analysis, and finite-difference time-domain. Applications include photovoltaics, thermal management, radiative control, and nonlinear optics. It is expected to be useful for graduate students interested in incorporating these techniques into their projects or thesis research. Students taking this course will be required to complete four (4) proctored exams using the edX online Proctortrack software. Completed exams will be scanned and sent using Gradescope for grading by Professor Bermel. Recommended Textbook for the course: Photonic Crystals: Molding the Flow of Light by J.D. Jaonnopoulos, S.G.Johnson, J.N. Winn, and R.B. Meade, Princeton University Press, 2008 ISNB Number: 9780691224568 Nanophotonic Modeling is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nanoscience and Technology. For further information and other courses offered and planned, please see the Nanoscience and Technology page. Courses like this can also apply toward a Master's Degree in Electrical and Computer Engineering for students accepted into the full master’s program at Purdue University.

Created by: Purdue University

Level: Advanced


Related Online Courses

Todos lo que nos envuelve y los materiales que utilizamos diariamente están formados por mezclas de compuestos químicos, cuyas propiedades, aplicaciones y transformaciones dependen de los e... more
Many resource-rich countries negotiate complex contracts to govern mining, oil, or gas projects. Despite the critical importance of these contracts in determining the risks and benefits of these... more
The primary goal of the course is to enable learners to understand what semiconductors are and exactly why they are useful to the electronics industry. We will learn why some materials are... more
Comment l’eau de pluie s'infiltre-t-elle dans le sol (et quelle partie ruisselle) ? Quelle est la recharge d’une nappe ? Quelle quantité d’eau un sol peut-il retenir ? Quelle sont les direct... more
El recurso energético está ligado al desarrollo, bienestar, sustentabilidad e independencia de las sociedades modernas. La utilización y administración adecuada de los diferentes recursos ene... more

CONTINUE SEARCH

FOLLOW COLLEGE PARENT CENTRAL