Fundamentals of TinyML

About this Course

What do you know about TinyML? Tiny Machine Learning (TinyML) is one of the fastest-growing areas of Deep Learning and is rapidly becoming more accessible. This course provides a foundation for you to understand this emerging field. TinyML is at the intersection of embedded Machine Learning (ML) applications, algorithms, hardware, and software. TinyML differs from mainstream machine learning (e.g., server and cloud) in that it requires not only software expertise, but also embedded-hardware expertise. The first course in the TinyML Certificate series, Fundamentals of TinyML will focus on the basics of machine learning, deep learning, and embedded devices and systems, such as smartphones and other tiny devices. Throughout the course, you will learn data science techniques for collecting data and develop an understanding of learning algorithms to train basic machine learning models. At the end of this course, you will be able to understand the “language” behind TinyML and be ready to dive into the application of TinyML in future courses. Following Fundamentals of TinyML, the other courses in the TinyML Professional Certificate program will allow you to see the code behind widely-used Tiny ML applications—such as tiny devices and smartphones—and deploy code to your own physical TinyML device. Fundamentals of TinyML provides an introduction to TinyML and is not a prerequisite for Applications of TinyML or Deploying TinyML for those with sufficient machine learning and embedded systems experience.

Created by: Harvard University

Level: Introductory


Related Online Courses

Statistical inference and modeling are indispensable for analyzing data affected by chance, and thus essential for data scientists. In this course, you will learn these key concepts through a... more
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
Demystify complex big data technologies Compared to traditional data processing, modern tools can be complex to grasp. Before we can use these tools effectively, we need to know how to handle big... more
In this course you’ll learn various statistics topics including multiple testing problem, error rates, error rate controlling procedures, false discovery rates, q-values and exploratory data a... more
Cuando se trata de herramientas para el análisis de datos, siempre tenemos las siguientes preguntas: ¿Cuál es la diferencia entre tantas herramientas que existen?¿Cuál es la mejor?¿Cuál deberi... more

CONTINUE SEARCH

FOLLOW COLLEGE PARENT CENTRAL