Rutgers Classifieds>Rutgers Online Courses>A-level Mathematics for Year 13 - Course 1: Functions, Sequences and Series, and Numerical Methods

A-level Mathematics for Year 13 - Course 1: Functions, Sequences and Series, and Numerical Methods

About this Course

This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level maths exams. The course is most appropriate to the Edexcel, AQA, OCR and OCR(MEI) papers. You will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study.These skills include: Fluency – selecting and applying correct methods to answer with speed and efficiency Confidence – critically assessing mathematical methods and investigating ways to apply them Problem solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions Constructing mathematical argument – using mathematical tools such as diagrams, graphs, logical deduction, mathematical symbols, mathematical language, construct mathematical argument and present precisely to others Deep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied Over seven modules, covering an introduction to functions and their notation, sequences and series and numerical methods testing your initial skillset will be extended to give a clear understanding of how background knowledge underpins the A-level course. You’ll also be encouraged to consider how what you know fits into the wider mathematical world.

Created by: Imperial College London

Level: Intermediate


Related Online Courses

Nous introduisons les fonctions réelles d'une variable réelle. Nous commençons par définir certaines de leurs propriétés, notamment la monotonie, la parité et la périodicité ainsi que les opératio... more
Las ecuaciones diferenciales son parte fundamental del estudio tanto de la matemática como de la ingeniería y la ciencia en general. Muchas leyes y fenómenos físicos pueden ser descritos med... more
Nous abordons notre dernier thème : l'intégration. Nous commençons par définir l'intégrale indéfinie et l'intégrale définie. Nous introduisons l'intégrale définie à l'aide des sommes de Riemann et... more
How did Newton describe the orbits of the planets? To do this, he created calculus. But he used a different coordinate system more appropriate for planetary motion. We will learn to shift our... more
Vous savez calculer la valeur de sin(π/4)? L'identité ln(xy)=ln(x)+ln(y) vous paraît familière? Dans le prélude nous rappelons et approfondissons quelques notions de ce type, en particulier les ... more

CONTINUE SEARCH

FOLLOW COLLEGE PARENT CENTRAL