Statistical Learning
About this Course
This is an introductory-level course in supervised learning, with a focus on regression and classification methods. The syllabus includes: linear and polynomial regression, logistic regression and linear discriminant analysis; cross-validation and the bootstrap, model selection and regularization methods (ridge and lasso); nonlinear models, splines and generalized additive models; tree-based methods, random forests and boosting; support-vector machines; neural networks and deep learning; survival models; multiple testing. Some unsupervised learning methods are discussed: principal components and clustering (k-means and hierarchical). This is not a math-heavy class, so we try and describe the methods without heavy reliance on formulas and complex mathematics. We focus on what we consider to be the important elements of modern data science. Computing is done in R. There are lectures devoted to R, giving tutorials from the ground up, and progressing with more detailed sessions that implement the techniques in each chapter. The lectures cover all the material in An Introduction to Statistical Learning, with Applications in R (second addition) by James, Witten, Hastie and Tibshirani (Springer, 2021). The pdf for this book is available for free on the book website.Created by: Stanford University
Level: Introductory

Related Online Courses
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
Analytical models are key to understanding data, generating predictions, and making business decisions. Without models it’s nearly impossible to gain insights from data. In modeling, it’s ess... more
Sustainable development is the most important global movement of our time. In 2015, the 193 member states of the United Nations unanimously adopted the 2030 Agenda for Sustainable Development and... more
Use Tableau to explore data and discover insights to innovate data-driven decision-making. Employer demand for Tableau skills will grow 35% over the next 10 years. Whether you are in a... more
This course, presented by the IMF's Statistics Department, teaches you how to compile timely, high quality national accounts statistics based on the system of national accounts (SNA) framework. The... more