Data Science: Wrangling
About this Course
In this course, part of our Professional Certificate Program in Data Science,we cover several standard steps of the data wrangling process like importing data into R, tidying data, string processing, HTML parsing, working with dates and times, and text mining. Rarely are all these wrangling steps necessary in a single analysis, but a data scientist will likely face them all at some point. Very rarely is data easily accessible in a data science project. It's more likely for the data to be in a file, a database, or extracted from documents such as web pages, tweets, or PDFs. In these cases, the first step is to import the data into R and tidy the data, using the tidyverse package. The steps that convert data from its raw form to the tidy form is called data wrangling. This process is a critical step for any data scientist. Knowing how to wrangle and clean data will enable you to make critical insights that would otherwise be hidden.Created by: Harvard University
Level: Introductory
Related Online Courses
In this course, experts will discuss the options a researcher must consider when embarking on clinical research. What research design should I choose? How do I start the process of getting my... more
We will explain how to perform the standard processing and normalization steps, starting with raw data, to get to the point where one can investigate relevant biological questions. Throughout the... more
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
Bayesian Statistics is a captivating field and is used most prominently in data sciences. In this course we will learn about the foundation of Bayesian concepts, how it differs from Classical... more