Data Science: Inference and Modeling
About this Course
Statistical inference and modeling are indispensable for analyzing data affected by chance, and thus essential for data scientists. In this course, you will learn these key concepts through a motivating case study on election forecasting. This course will show you how inference and modeling can be applied to develop the statistical approaches that make polls an effective tool and we'll show you how to do this using R. You will learn concepts necessary to define estimates and margins of errors and learn how you can use these to make predictions relatively well and also provide an estimate of the precision of your forecast. Once you learn this you will be able to understand two concepts that are ubiquitous in data science: confidence intervals, and p-values. Then, to understand statements about the probability of a candidate winning, you will learn about Bayesian modeling. Finally, at the end of the course, we will put it all together to recreate a simplified version of an election forecast model and apply it to the 2016 election.Created by: Harvard University
Level: Introductory

Related Online Courses
We are all getting familiar with the image of a drone in the sky. Although flying a drone is fun, drones are not toys. More and more UAVs or drones are used by governments and companies to gain... more
En este curso en línea el estudiante aprenderá los conceptos estadísticos básicos para realizar un análisis aplicado de datos, haciendo los cálculos en Excel y buscando la interpretación de cada u... more
Designing a data lake is challenging because of the scale and growth of data. Developers need to understand best practices to avoid common mistakes that could be hard to rectify. In this course we... more
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
Este curso se dirige a usuarios de Tableau que han madurado un sólido conocimiento del software en los cursos de nivel básico e intermedio. En los precedentes módulos, hemos podido aprender a an... more