A-level Further Mathematics for Year 12 - Course 1: Complex Numbers, Matrices, Roots of Polynomial Equations and Vectors
About this Course
This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level further maths exams. You will investigate key topic areas to gain a deeper understanding of the skills and techniques that you can apply throughout your A-level study. These skills include: Fluency – selecting and applying correct methods to answer with speed and efficiency Confidence – critically assessing mathematical methods and investigating ways to apply them Problem-solving – analysing the ‘unfamiliar’ and identifying which skills and techniques you require to answer questions Constructing mathematical argument – using mathematical tools such as diagrams, graphs, logical deduction, mathematical symbols, mathematical language, construct mathematical argument and present precisely to others Deep reasoning – analysing and critiquing mathematical techniques, arguments, formulae and proofs to comprehend how they can be applied Over eight modules, you will be introduced to complex numbers, their modulus and argument and how they can be represented diagrammatically matrices, their order, determinant and inverse and their application to linear transformation roots of polynomial equations and their relationship to coefficients series, partial fractions and the method of differences vectors, their scalar produce and how they can be used to define straight lines and planes in 2 and 3 dimensions. Your initial skillset will be extended to give a clear understanding of how background knowledge underpins the A-level further mathematics course. You’ll also be encouraged to consider how what you know fits into the wider mathematical world.Created by: Imperial College London
Level: Intermediate
Related Online Courses
Nous abordons notre dernier thème : l'intégration. Nous commençons par définir l'intégrale indéfinie et l'intégrale définie. Nous introduisons l'intégrale définie à l'aide des sommes de Riemann et... more
Vous savez calculer la valeur de sin(π/4)? L'identité ln(xy)=ln(x)+ln(y) vous paraît familière? Dans le prélude nous rappelons et approfondissons quelques notions de ce type, en particulier les ... more
L'équation z^2=−1 n'admet pas de solution dans R. Nous introduisons le système des nombres complexes C : C'est un corps qui contient R et qui nous permet de résoudre cette équation. Nous intro... more
Nuestro curso de álgebra lineal te propone acercarte a los fundamentos de esta importante materia para comprender las bases que te permitirán entrar a las aplicaciones más actuales de este tema. E... more
Matrix Algebra underlies many of the current tools for experimental design and the analysis of high-dimensional data. In this introductory online course in data analysis, we will use matrix algebra... more