Introduction to Scientific Machine Learning
About this Course
This course provides an introduction to data analytics for individuals with no prior knowledge of data science or machine learning. The course starts with an extensive review of probability theory as the language of uncertainty, discusses Monte Carlo sampling for uncertainty propagation, covers the basics of supervised (Bayesian generalized linear regression, logistic regression, Gaussian processes, deep neural networks, convolutional neural networks), unsupervised learning (k-means clustering, principal component analysis, Gaussian mixtures) and state space models (Kalman filters). The course also reviews the state-of-the-art in physics-informed deep learning and ends with a discussion of automated Bayesian inference using probabilistic programming (Markov chain Monte Carlo, sequential Monte Carlo, and variational inference). Throughout the course, the instructor follows a probabilistic perspective that highlights the first principles behind the presented methods with the ultimate goal of teaching the student how to create and fit their own models.Created by: Purdue University
Level: Advanced

Related Online Courses
Maps are graphic representations of reality and help us understand and navigate the world around us. Maps can incorporate third dimension through contours, hillshading (3D modeling), and profile... more
Este curso integra las perspectivas de distintas disciplinas para abordar la ecología política (EP) como una forma de reconocer y llamar la atención sobre los distintos contextos y relaciones so... more
This course will introduce you to a broad range of methodologies used in the field of machine dynamics. You will learn how to model a vehicle using the fundamentals of mechanics. You will get a... more
Se presentan de forma teórica y práctica los conceptos y leyes fundamentales que rigen los circuitos eléctricos. Se introducen los conceptos de tensión, intensidad, potencia y energía eléc... more
މިއީ ހަމަ ހަގީގަތުގައިވެސް ފުރިހަމަ ތޫފާނެކެވެ. ކާބޯތަކެތި ލިބުމުގެ ދަތިކަމާއި، އެއް މިންވަރަށް މި އިތުރުވަމުންދާ އާބާދީއަށް ހަކަތަ ނުލިބުމާއި ގައްވު ހޫނުވުމަކީ މި ތޫފާން އިތުރަށް ވަރުގ... more