Analyse I (partie 3) : Suites de nombres réels I et II
About this Course
Une suite de nombres réels est une fonction f:N→R . Il est habituel d'écrire an:=f(n) pour la valeur de f en n. Par exemple, on pourrait définir une suite f(n):=an:=12n, c'est-à-dire a0=1,a1=12,a2=14,a3=18,... . Le concept central est celui de la limite d'une suite : c'est un nombre réel auquel, intuitivement, la suite donnée s'approche de plus en plus. Par exemple la suite an donnée en haut admet comme limite le nombre zéro. Nous définirons le concept de la limite d'une manière rigoureuse et développerons des méthodes pour établir l'existence d'une limite. En plus, nous découvrirons un lien entre le concept de la limite et celui de l'infimum et du supremum d'un ensemble. Une application très importante des suites de nombres réels est le fait que chaque nombre réel peut être considéré comme la limite d'une suite de nombres rationnels. Nous verrons comment obtenir le nombre irrationnel racione de 5 comme limite d'une suite de nombres rationnels. Nos étudions le concept des suites de Cauchy et des suites définies par récurrence linéaire. Nous montrons certaines propriétés des suites définies par récurrence linéaire, en faisant en lien avec les suites de Cauchy. Nous nous intéressons aux limites des suites et des sous-suites, ce qui nous amène au théorème de Bolzano-Weierstrass. A l'aide des suites, nous définissons aussi le concept des séries numériques que nous illustrons à l'aide de différents exemples. Nous définissons certains critères de convergence pour les séries, notamment le critère de d'Alembert, le critère de Cauchy, le critère de comparaison et le critère de Leibniz. Finalement, nous étudions les séries numériques avec un paramètre.Created by: École polytechnique fédérale de Lausanne
Level: Introductory

Related Online Courses
Este curso se concibe como una revisión de los conceptos básicos del cálculo diferencial, necesarios para los primeros cursos de aquellos estudios universitarios en los que se imparte ma... more
Introduction to linear optimization, duality and the simplex algorithm.Created by: École polytechnique fédérale de LausanneLevel: Introductory more
En este curso de 4 módulos, desarrollarás competencias básicas para el cálculo identificando elementos de diferentes sistemas numéricos, obtendrás habilidades en el manejo de las operaciones básic... more
Este curso está concebido como una preparación mínima necesaria para los primeros cursos de ingeniería y otros estudios en los que se imparten matemáticas. En él trabajaremos: El concepto de conju... more
This course by Imperial College London is designed to help you develop the skills you need to succeed in your A-level maths exams. The course is most appropriate to the Edexcel, AQA, OCR and... more