Keiser University-Tallahassee Classifieds>Keiser University-Tallahassee Online Courses>Understanding Artificial Intelligence through Algorithmic Information Theory

Understanding Artificial Intelligence through Algorithmic Information Theory

About this Course

Artificial Intelligence is more than just a collection of brilliant, innovative methods to solve problems. If you are interested in machine learning or are planning to explore it, the course will make you see artificial learning in an entirely new way. You will know how to formulate optimal hypotheses for a learning task. And you will be able to analyze learning techniques such as clustering or neural networks as just ways of compressing information. If you are interested in reasoning , you will understand that reasoning by analogy, reasoning by induction, explaining, proving, etc. are all alike; they all amount to providing more compact descriptions of situations. If you are interested in mathematics , you will be amazed at the fact that crucial notions such as probability and randomness can be redefined in terms of algorithmic information. You will also understand that there are theoretical limits to what artificial intelligence can do. If you are interested in human intelligence , you will find some intriguing results in this course. Thanks to algorithmic information, notions such as unexpectedness, interest and, to a certain extent, aesthetics, can be formally defined and computed, and this may change your views on what artificial intelligence can achieve in the future. Half a century ago, three mathematicians made the same discovery independently. They understood that the concept of information belonged to computer science; that computer science could say what information means. Algorithmic Information Theory was born. Algorithmic Information is what is left when all redundancy has been removed. This makes sense, as redundant content cannot add any useful information. Removing redundancy to extract meaningful information is something computer scientists are good at doing. Algorithmic information is a great conceptual tool. It describes what artificial intelligence actually does , and what it should do to make optimal choices. It also says what artificial intelligence can’t do. Algorithmic information is an essential component in the theoretical foundations of AI. Keywords: Algorithmic information, Kolmogorov complexity, theoretical computer science, universal Turing machine, coding, compression, semantic distance, Zipf’s law, probability theory, algorithmic probability, computability, incomputability, random sequences, incompleteness theorem, machine learning, Occam's razor, minimum description length, induction, cognitive science, relevance.

Created by: IMT

Level: Advanced


Related Online Courses

La Inteligencia Artificial (IA) está tomando mucha importancia en nuestra vida personal y laboral. Pero, ¿será posible construir una máquina o robot tan inteligente como el ser humano? Esta es una... more
Robotics and AI are all around us and promise to revolutionize our daily lives. Autonomous vehicles have a huge potential to impact society in the near future, for example, by making owning private... more
Is your team beginning to use Kubernetes for container orchestration? Do you need guidelines on how to start transforming your organization with Kubernetes and cloud native patterns? Would you like... more
This course was created to help learners understand how to design the architecture of IoT systems. IoT (Internet of Things) systems are inherently distributed, heterogeneous, and complicated,... more
Organizations are increasingly moving their critical information and assets to the cloud. Understand the technology, best practices, and economics of cloud computing, and the rewards and risks of... more

CONTINUE SEARCH

FOLLOW COLLEGE PARENT CENTRAL