Probability and Statistics in Data Science using Python

About this Course

The job of a data scientist is to glean knowledge from complex and noisy datasets. Reasoning about uncertainty is inherent in the analysis of noisy data. Probability and Statistics provide the mathematical foundation for such reasoning. In this course, part of the Data Science MicroMasters program, you will learn the foundations of probability and statistics. You will learn both the mathematical theory, and get a hands-on experience of applying this theory to actual data using Jupyter notebooks. Concepts covered included: random variables, dependence, correlation, regression, PCA, entropy and MDL.

Created by: The University of California, San Diego

Level: Advanced


Related Online Courses

Analytical models are key to understanding data, generating predictions, and making business decisions. Without models it’s nearly impossible to gain insights from data. In modeling, it’s ess... more
As part of our Professional Certificate Program in Data Science, this course covers the basics of data visualization and exploratory data analysis. We will use three motivating examples and... more
Today the principles and techniques of reproducible research are more important than ever, across diverse disciplines from astrophysics to political science. No one wants to do research that... more
El análisis exploratorio de datos (EDA, por sus siglas en inglés, Exploratory Data Analysis) es el proceso o tratamiento estadístico al cual se someten los datos de una muestra con la que se bu... more
Le « Big Data » et l'UX vous interpellent? Ce MOOC vous donnera les méthodes et outils pour analyser le spectre des données traitées en UX, de l'analyse qualitative aux analytiques Web. Vous appr... more

CONTINUE SEARCH

FOLLOW COLLEGE PARENT CENTRAL