Big Data Analytics Using Spark
About this Course
In data science, data is called "big" if it cannot fit into the memory of a single standard laptop or workstation. The analysis of big datasets requires using a cluster of tens, hundreds or thousands of computers. Effectively using such clusters requires the use of distributed files systems, such as the Hadoop Distributed File System (HDFS) and corresponding computational models, such as Hadoop, MapReduce and Spark. In this course, part of the Data Science MicroMasters program, you will learn what the bottlenecks are in massive parallel computation and how to use spark to minimize these bottlenecks. You will learn how to perform supervised an unsupervised machine learning on massive datasets using the Machine Learning Library (MLlib). In this course, as in the other ones in this MicroMasters program, you will gain hands-on experience using PySpark within the Jupyter notebooks environment.Created by: The University of California, San Diego
Level: Advanced

Related Online Courses
Este curso en línea brinda una introducción al análisis de datos para business intelligence. Aprenderás de herramientas y técnicas de estadística descriptiva e inferencial. Serás capaz de analiz... more
In autonomous vehicles such as self-driving cars, we find a number of interesting and challenging decision-making problems. Starting from the autonomous driving of a single vehicle, to the... more
¿Necesitas incorporar la inteligencia de negocio a tu empresa de forma que te permita analizar cantidades ingentes de datos para tomar las mejores decisiones? Power BI Desktop, la herramienta ... more
In this capstone course, you will apply various data science skills and techniques that you have learned as part of the previous courses in the IBM Data Science with R or IBM Data Analytics with... more
La ciencia de los datos se encarga de la extracción, preparación, análisis y presentación visual de datos. Existen diferentes lenguajes de programación que otorgan posibilidades para realizar proy... more