Data Science: Linear Regression
About this Course
Linear regression is commonly used to quantify the relationship between two or more variables. It is also used to adjust for confounding. This course, part ofourProfessional Certificate Program in Data Science, covers how to implement linear regression and adjust for confounding in practice using R. In data science applications, it is very common to be interested in the relationship between two or more variables. The motivating case study we examine in this course relates to the data-driven approach used to construct baseball teams described in Moneyball. We will try to determine which measured outcomes best predict baseball runs by using linear regression. We will also examine confounding, where extraneous variables affect the relationship between two or more other variables, leading to spurious associations. Linear regression is a powerful technique for removing confounders, but it is not a magical process. It is essential to understand when it is appropriate to use, and this course will teach you when to apply this technique.Created by: Harvard University
Level: Introductory

Related Online Courses
Please Note: Learners who successfully complete this IBM course can earn a skill badge — a detailed, verifiable and digital credential that profiles the knowledge and skills you’ve acquired in thi... more
Este curso se orienta a la formación de profesionales en Inteligencia Empresarial mediante el aprendizaje de la plataforma Tableau, instrumento líder del sector. Tableau permite ayudar a las que p... more
Este curso se dirige a usuarios de Tableau que han madurado un sólido conocimiento del software en los cursos de nivel básico e intermedio. En los precedentes módulos, hemos podido aprender a an... more
Este es el segundo curso de una serie sobre Power BI, es un curso de nivel intermedio en el que ampliarás conocimientos sobre las medidas DAX para poder generar funciones complejas que midan ... more
Every modern organization is a digital organization or will rapidly become digital. Artificial intelligence, Google/Amazon/Facebook/Uber, and big data have dramatically raised customer expectations... more