Machine Learning Fundamentals
About this Course
Do you want to build systems that learn from experience? Or exploit data to create simple predictive models of the world? In this course, part of the Data Science MicroMasters program, you will learn a variety of supervised and unsupervised learning algorithms, and the theory behind those algorithms. Using real-world case studies, you will learn how to classify images, identify salient topics in a corpus of documents, partition people according to personality profiles, and automatically capture the semantic structure of words and use it to categorize documents. Armed with the knowledge from this course, you will be able to analyze many different types of data and to build descriptive and predictive models. All programming examples and assignments will be in Python, using Jupyter notebooks.Created by: The University of California, San Diego
Level: Advanced

Related Online Courses
Do big data and UX speak to you? This MOOC will give you the methods and tools to analyze the whole spectrum of data we handle in UX, from qualitative user research and quantitative user testing... more
A typical data analysis project may involve several parts, each including several data files and different scripts with code. Keeping all this organized can be challenging. Part of our... more
Las decisiones hoy día se realizan considerando múltiples variables en forma simultánea, para ello debemos analizar conjuntos de datos multivariantes medidos simultáneamente para cada individuo u o... more
Decisions made by humans are rarely made by data alone. Human decision-makers have cognitive biases, are affected by emotions, and make conceptual leaps beyond what the data may suggest. The best... more
El análisis exploratorio de datos (EDA, por sus siglas en inglés, Exploratory Data Analysis) es el proceso o tratamiento estadístico al cual se someten los datos de una muestra con la que se bu... more